Начертательная геометрия

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия

Цилиндроид

Алгоритм построения цилиндроида

Для построения образующих (если поверхность уже сконструирована) проводят ряд плоскостей, параллельных плоскости параллелизма, и определяют точки их пересечения с направляющими (m, n) (Рис. 2-67).

Рис. 2-67

Для удобства построения часто за плоскость параллелизма принимают одну из плоскостей проекций; тогда образующие становятся линиями уровня.

Задача: сконструировать поверхность Ф - цилиндроид, М Ì Ф, М1 = ?

1. Задать проекции элементов определителя: Ф(m, n, П1) (Рис. 2-68) ;

2. Построить проекции поверхности - дискретный каркас из пяти образующих:

l Ç m, l Ç n, l || П1

Задать проекции элементов определителя m(m1, m2); n(n1, n2).

Рис. 2-68

а) На m2, например, взять 5 точек (но чем больше, тем точнее построение поверхности) (12, 22, 32, 42, 52) (рис. 2-69);

б) Через эти точки провести пять l || П1 Þ 62, 72, 82, 92, 102 (рис. 2-70), все l2 ^ линиям связи, т.е. образующие занимают положение горизонталей.

Рис. 2-69

в) Построить горизонтальные проекции этих точек на m1 и n1

г) Построить горизонтальные проекции образующих, соединяя:

11-101; 21-91; 31-81; 41-71; 51-61 (рис. 2-70).

Рис. 2-70

3. Линиями обреза являются образующие 1-10, 5-6.

4. Определить видимость (рис. 2-71).

а) Относительно П2 все образующие видимы.

б) Относительно П1: образующая 12102 выше всех, поэтому она видима на П1. Другим способом: точки А и В - горизонтально конкурирующие. Обвести проекции поверхности плавной огибающей кривой, учитывая, что это линейчатая, но кривая поверхность.

5. Для построения М1 необходимо провести дополнительную образующую

C2D2 ® C1D1, М1 Î C1D1.

Рис. 2-71

Проекции коноида (рис. 2-72) и гиперболического параболоида (рис. 2-74) строятся аналогично цилиндроиду

Начертательная геометрия Поверхности вращения