Начертательная геометрия

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия

Сфера

Сфера образуется вращением окружности (l) вокруг оси (ее диаметра) (i)

Г(i l), - сфера, i ^ П1 А(А2) Î Г; А1, А3 = ?

Рис. 2-83

а (а1, а2, а3) - экватор, определяет видимость относительно П1

в (в1, в2, в3) - главный (фронтальный) меридиан, определяет видимость относительно П2

с (с1, с2, с3) - профильный меридиан, определяет видимость относительно П3

Алгоритм построения точки А(А1, А3)

1. а) Для построения А1 через точку А2(задана видимой) проводят параллель, замеряют радиус – R2(от оси до очерка), строят горизонтальную проекцию этой параллели, проводят линию связи из точки А2 Þ А1.

б) Определяют видимость А1 - невидима, т.к. точка А(А2) на расположена ниже экватора ( на П2 - в незаштрихованной зоне).

2. а) Для построения А3 из точки А2 проводят линию связи на П3, на П1 замеряют расстояние от фронтального меридиана (в1)- Dу (параллельно оси У), переносят на П3, откладывая от проекции фронтального меридиана (в3) по линии связи (параллельно оси У) Þ А3

б) Определяют видимость А3 - видима, т.к. точка А(А1) на П1 расположена перед профильным меридианом (на П1 в заштрихованной зоне) (рис.2-83).

Пример: F(i, l), а(а2) Ì F, а1, а3 = ? (рис. 2-84)

Рис. 2-84

1. Сначала отмечают особые точки (рис. 2-84):

Точка 22 Þ 21, 23 - по принадлежности экватору

Точки 12 Þ 11, 13 и 32 Þ 31, 33 - по принадлежности главному меридиану

Точка 52 Þ 51, 53 по принадлежности профильному меридиану

2. Промежуточные: 4, 6, 7 находят с помощью параллелей, радиусы которых замеряют от оси до очерка на П2. Профильные проекции точек находят см. (рис. 2-83) Þ А3.

Особые параллели и точки на них являются границами видимости кривой на соответствующих проекциях сферы.

Начертательная геометрия Поверхности вращения