Начертательная геометрия

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия

Алгоритм построения главного меридиана однополостного гиперболоида,

Y(i, l) (образующая - прямая линия).

При построении однополостного гиперболоида, как линейчатой поверхности, главный (фронтальный меридиан) строится по точкам, чем больше точек, тем точнее построения. Рассмотрим алгоритм построения одной точки (Е), взятой на образующей.

Графический алгоритм построения одной точки

Рис. 2-94

Графический алгоритм построения поверхности

Рис. 2-95

1) Задать проекции определителя Y(i, l), i ^ П1 (рис. 2-95);

2) Распределить точки на l1, которые определят положение будущих параллелей на П1 и П2:

Точка 1(11) - определит положение горловой параллели (т.к. это ближайшая точка к оси вращения)

Точка 2(21) - определит положение верхней параллели;

Точка 3(31) - определит положение нижней параллели и одновременно будет экватором;

Точки 4, 5, 6(41, 51, 61) - промежуточные точки;

3)Точки (11.....61 ® 12....62).

4). Далее все точки нужно ввести в плоскость фронтального меридиана (рис. 2-96), используя основное свойство поверхности вращения: каждая точка вращается вокруг оси по окружности (параллели),плоскость которой перпендикулярна оси,

Точки 11.......61 ® 11’.......61’

Точки 11’.......61’ ® 12’.......62’

Рис. 2-96

6) Полученные точки соединить плавной кривой ® правый полумеридиан (рис. 2-97)

Рис. 2-97

7) Все полумеридианы поверхностей вращения равны, поэтому симметрично правому достраиваем левый (рис. 2-98)

8) Определить видимость поверхности (см. рис. 2-98)

Рис. 2-98

9) А(А2) и В(В1) Ì Y, А1, В2 = ?

Точки находят так же, как на любой поверхности вращения.

а) Через точку А2 проводят параллель до пересечения с главным (фронтальным) меридианом (точка М2), М2 ® М1. Через М1 проводят горизонтальную проекцию этой параллели или замеряют радиус этой параллели на П2 и проводят на П1.

Проводят линию связи из точки А2, которая пересекает построенную параллель в двух точках, выбрать нужно верхнюю, т.к. точка А2 в скобках, значит она находится за фронтальным меридианом (сзади). Точку А1 нужно взять в скобки, т.к. она не расположена в зоне видимости (в не заштрихованной зоне).

б) Через точку В1 проводят параллель (вводят в плоскость фронтального меридиана ® N1), N1 ® N2. Через N2 проводят фронтальную проекцию этой параллели, из В1 проводят линию связи ® В2. Точка В2 - видима, т.к. В1 находится перед фронтальным меридианом.

Начертательная геометрия Поверхности вращения