Начертательная геометрия

Эллипс получится в сечении, если плоскость не перпендикулярна оси конуса и пересекает все его образующие (рис. 3-22, 3-23, 3-24).

Алгоритм: Ф Ç W = d . 2 ГПЗ, 2 алгоритм.

Ф ^^ П2 Þ d2 = Ф2.

d1 Ì W.

Рис. 3-22

Построение эллипса начинаем с его осей (рис. 3-22). АВ - большая ось эллипса, причём, А2В2 - её натуральная величина, А1В1 - её проекция. СЕ - малая ось эллипса, она перпендикулярна большой оси и делит её пополам. Чтобы найти СЕ, разделим А2В2 с помощью циркуля пополам, получим точки С2, Е2, и радиусом R , равным радиусу параллели, на которой лежат точки С и Е, сделаем засечки на линии связи, проведённой от точек С2, Е2. Получим точки С1 и Е1. Эти точки - фронтально конкурирующие, С1 - ближе к нам, поэтому Е2 - невидимая.

Далее эллипс можно строить двояко:

1. Можно строить его по двум осям любым из известных способов (например, приведённым в разделе "Кривые линии"). Этот способ показан на рис. 3-23.

Рис. 3-23

2. Можно строить эллипс по точкам, по принадлежности конусу, особенно, если в какой-либо конкретной задаче эллипс получается неполным. Такое решение показано на рис. 3-24.

Рис. 3-24

Построим три проекции линии пересечения конуса с плоскостью Ф. Горизонтальную проекцию точек А, В, С, Е строим так, как показано на рис. 3-22. Остальные, промежуточные, точки строим аналогично точкам С и Е, по принадлежности параллелям конуса. Радиусом параллели, на которой расположена точка, равным расстоянию от оси до очерка конуса, из центра S1 делаем засечки на линиях связи от соответствующих точек. Соединяем точки с помощью лекала и получаем горизонтальную проекцию эллипса. При данном расположении конуса эллипс на П1 виден весь.

Построение эллипса на П3 начинаем также с характерных точек. Ими являются:

1) Точки А и В, которые расположены в плоскости фронтального меридиана, следовательно, на П2 - на очерковых образующих, а на П3 - на оси.

2) Точки М и N принадлежат профильным образующим - они определяют видимость эллипса относительно П3: часть эллипса от точки В до точек М и N расположена левее профильных образующих, следовательно, на П3 она видна; соответственно, часть эллипса от точек М и N до точки А на П3 не видна .

3) Промежуточные точки на П3 строим, откладывая координату y для каждой точки (расстояния, помеченные одной, двумя или тремя рисками) с П1 на П3. Соединяем точки с учётом видимости и получаем профильную проекцию эллипса.

4. Парабола получится в сечении, если плоскость, пересекая конус, проходит параллельно только одной его образующей (рис. 3-25).

Алгоритм: W Ç D = m. D || SK. 2 ГПЗ, 2 алгоритм

^^ П2 Þ m2 = D2

m1 Ì W

Рис. 3-25

Построение параболы начинаем с характерных точек:

1) А - вершина параболы. А2 принадлежит очерковой образующей конуса, следовательно, А расположена в плоскости фронтального меридиана Þ А1.

2) Точки В и С - низшие точки параболы, принадлежат окружности основания n конуса, на П1 находим их с помощью линии связи тоже без дополнительных построений.

Промежуточные точки находим так же, как и в случае построения эллипса, то есть по принадлежности параллелям конуса. Соединяем точки с помощью лекала и получаем параболу.

Так как плоскость D параллельна только одной образующей конуса, то парабола имеет одну несобственную точку.

Поэтому, в частном случае, когда плоскость D касается одной образующей SК конуса (рис. 3-26), то получается вырожденный вид параболы - прямая m, совпадающая с SK.

Рис. 3-26

Начертательная геометрия Поверхности вращения