Начертательная геометрия

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия

3 алгоритм

Решение задач в случае, когда обе пересекающиеся фигуры - непроецирующие.

В данном случае задача усложняется тем, что на чертеже нет главной проекции ни у одной из пересекающихся фигур. Поэтому для решения таких задач специально вводят вспомогательную секущую поверхность-посредник, которая пересекает обе фигуры, выявляя общие точки. Эта поверхность-посредник может быть проецирующей, и тогда решение задачи можно свести ко 2 алгоритму, или непроецирующей (например, сфера - посредник). Решение первой и второй ГПЗ рассмотрим отдельно.

Решение 1ГПЗ

Для нахождения точек пересечения прямой с поверхностью в качестве поверхности-посредника чаще всего берут проецирующую плоскость, которую проводят через данную прямую. Далее находят линию пересечения этой плоскости с поверхностью, используя 2 алгоритм, и определяют точки пересечения полученной линии с данной прямой. Эти точки и будут являться точками пересечения поверхности с прямой (рис. 3-35).

Рис. 3-35

Рассмотрим этот алгоритм на конкретном примере.

Задача: Найти точку пересечения плоскости Г(АВС) с прямой а.

Определить видимость прямой (рис. 3-36).

Рис. 3-36

Алгоритм:

1. Возьмём плоскость-посредник S так, чтобы она включала в себя прямую а и была бы проецирующей, например, относительно П1. Тогда S1 совпадёт с а1 (рис. 3-37а,б).

Рис. 3-37а

Рис. 3-37б

2. Пересекаем проецирующую плоскость S с плоскостью общего положения АВС, результатом будет прямая m. Задачу решаем по 2 алгоритму: m2 совпадает с S2, m1 находим по принадлежности плоскости АВС. m =12 Þ m2 = 1222.

3. m2, пересекаясь с а2, даёт нам точку К2 Þ К1.

4. Видимость прямой а определяем методом конкурирующих точек (рис. 3-37в):

Рис. 3-37в

Видимость относительно П2:

5ÎАВ, 3Îа - фронтально конкурирующие. На П2 видна точка 3 Þ участок прямой а слева от точки К2 - видимый.

Видимость относительно П1:

2 Î ВС, 4 Î а - горизонтально конкурирующие. На П1 видна точка 2 Þ участок прямой а справа от точки К1 до точки 41 - невидимый.

Выполним краткую алгоритмическую запись решения задачи:

Г(АВС) Ç а = К. 1 ГПЗ, 3 алгоритм.

S - плоскость-посредник, S É а, S || П1 Þ S1= а1;

S Ç Г = m. 2 ГПЗ, 2 алгоритм. S ^^ П1 Þ m1 = S1; m2 Ì Г

m2 Ç а2 = К2 Þ К1.

Такой алгоритм решения приемлем для нахождения точек пересечения любой поверхности с прямой линией. Разница заключается в форме линии m, которая является результатом пересечения плоскости-посредника с заданной поверхностью и зависит от вида поверхности. В рассмотренном примере m - это прямая линия. Если вместо плоскости Г(АВС) возьмём, например, сферу, то линия m будет являться окружностью, которая может проецироваться на какую-либо плоскость проекций в виде эллипса, если с прямой пересекается многогранник, то m - это плоский многоугольник и т.д. Подробнее рассмотрим один из таких примеров, используя указанный алгоритм решения.

Задача: Найти точки пересечения пирамиды Г(SABC) с прямой а (рис. 3-38). Определить видимость прямой.

Рис. 3-38

1. Через прямую а проведём плоскость-посредник S, проецирующую относительно П2 (рис. 3-39а,б). S2 = а2.

Рис. 3-39а

Рис. 3-39б

2. Пересекаем плоскость S с пирамидой. Результатом является замкнутая ломаная линия m(1,2,3) - треугольник. Согласно 2 алгоритму, горизонтальную проекцию треугольника строим по принадлежности пирамиде. Точки 11 и 31 находим с помощью линий связи на соответствующих рёбрах SA и SC. Точку 21 находим по принадлежности плоскости треугольника SBC с помощью вспомогательной прямой 24, параллельной ВС Þ 2141 || B1C1.

3. m1(11,21,31), пересекаясь с а1, даёт нам точки К1 и Р1 Þ К2, Р2.

4. Определяем видимость прямой на обеих проекциях (рис. 3-40). Невидимый участок прямой расположен между точками К и Р.

Рис. 3-40

Выполним алгоритмическую запись решения:

Г(SABC) Ç a = K ,P. 1 ГПЗ, 3 алгоритм.

1. S - плоскость-посредник,

S É а, S ^^ П2 Þ S2 = a2

2. S Ç Г = m(123). 2 ГПЗ, 2 алг.

S ^^ П2 Þ m2(12,22,32) = S2;

m1(11,21,31) Ì Г

3. m1(11,21,31) Ç а1 = К1, Р1 Þ К2, Р2.

Вывод: все задачи на пересечение непроецирующей прямой с любой непроецирующей поверхностью решаются по единому - третьему алгоритму, с помощью плоскости - посредника.

Начертательная геометрия Поверхности вращения