Начертательная геометрия

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия

Решение 2ГПЗ (в случае пересечения непроецирующих фигур)

Чтобы построить линию пересечения двух непроецирующих поверхностей т, нужно выполнить следующие операции:

Задать поверхность-посредник (напоминаем, что в этом качестве чаще всего берутпроецирующую плоскость);

Построить линии пересечения а и b поверхности-посредника с заданными поверхностями;

Найти точки пересечения построенных линий;

Повторять построения столько раз, сколько необходимо для того, чтобы линия пересечения поверхностей выявилась полностью;

Определить видимость линии пересечения m и самих поверхностей.

Следует напомнить, что:

а) Решение 2 ГПЗ необходимо начинать с анализа характера пересечения поверхностей для определения количества линий пересечения m|;

б) Плоскость-посредник необходимо выбирать так, чтобы она пересекала обе поверхности по графически простым линиям - прямым или окружностям.

Рассмотрим алгоритм решения на пространственной модели (рис. 3-41):

Рис. 3-41

Ф Ç D = m; 2ГПЗ, 3 алгоритм .

Отмечаем очевидные точки пересечения - М и Р.

Вводим плоскость-посредник S (как правило - проецирующую.)

Ç Ф = а; S Ç D = b;

а Ç b = K.

Для построения линии m нужно найти такое количество точек, которое определяет данную линию. Для этого вводим несколько плоскостей-посредников.

Определяем видимость линии пересечения m и поверхностей.

Задача: Построить линию пересечения конуса Ф со сферой D (рис. 3-42).

Алгоритм: 2ГПЗ , 3 алгоритм.

Рис. 3-42

1. Вначале определяем, что должно быть общим элементом в результате пересечения и количество общих элементов. Пересекаются две поверхности вращения второго порядка, характер пересечения - вмятие, следовательно, должна получиться одна пространственная кривая линия m. Кроме того, поверхности имеют общую плоскость симметрии (это плоскость фронтального меридиана W). Это означает, что линия пересечения симметрична относительно плоскости W, и на П2 две её ветви должны слиться в одну видимую линию.

2. Построения начинаем с характерных точек (рис.3-43), не требующих дополнительных построений для их нахождения. К ним относятся точки М и Р, лежащие в плоскости W и принадлежащие очерковым образующим конуса и сферы на П2 – М2 и P2. М1 и Р1 находим с помощью линии связи.

Рис. 3-43

3. Все остальные точки находим одинаково: задаём плоскость-посредник S (рис. 3-44). В её качестве выбираем горизонтальную плоскость уровня S2. Эта плоскость пересекает конус Ф по окружности а, радиусом R1 (от оси до очерка конуса). Проводим на П1 эту окружность а1 из центра конуса S1.

Рис. 3-44

Эта же плоскость пересекает сферу D по окружности b, радиусом R2 (от оси до очерка сферы). Проводим на П1 эту окружность b1 из центра О1 сферы.

Окружности, пересекаясь, дают нам точки К1 и К1', принадлежащие линии пересечения m. К2 и К2' находим с помощью линии связи по принадлежности плоскости S.Остальные точки находим аналогично.

4. Видимость горизонтальной проекции линии пересечения определяют точки А и А', лежащие в плоскости экватора с сферы (рис. 3-45). На П1 они принадлежат окружности с1. Все точки, расположенные ниже А2 и А2', на П1 будут невидимыми, в том числе и точки Р1, К1 и К1'.

Рис. 3-45

5. Крайние левые точки В и В' находим в плоскости S ', проходящей через точку встречи левой очерковой образующей конуса с перпендикуляром, проведённым из точки пересечения оси конуса с плоскостью экватора сферы (рис. 3-46). Построения проводим так, как описано в п.3.

Рис. 3-46

6. Конечный результат построений с учётом видимости линии пересечения и самих поверхностей приведен на рис. 3-47. Как мы и предполагали на основе анализа в п.1, линия пересечения m одна, симметрична относительно плоскости фронтального меридиана W, симметричные ветви её на П2 слились в одну видимую линию.

Рис. 3-47

Алгоритмическая запись решения:

Ф Ç D = m. 2ГПЗ, 3 алгоритм .

1. Точки М и Р Î W Þ М2; Р2 Þ М1; Р1.

2. S - плоскость-посредник; S || П1,

3. S Ç Ф = а Þ а1; S Ç D = b Þ b1; b1 Ç a1 = K1; K1' Þ K2; K2'.

4. Аналогично строим остальные точки: m1 Þ m2.

5. Видимость m относительно П1: точки А, А' Î с.

Вывод: Решение 2ГПЗ в случае пересечения непроецирующих фигур проводят по единому - третьему алгоритму и осуществляют с помощью плоскостей-посредников, которых берётся такое количество, чтобы линия пересечения выявилась полностью.

Начертательная геометрия Поверхности вращения