Решение позиционных и метрических задач

Математика
Дифференциальное исчисление
Интегральное исчисление
Ряды
Основы векторной алгебры
Начертательная геометрия
Аксонометрические проекции
Плоскости и их проекции
Конические сечения
Поверхности вращения
Позиционные и метрические задачи
Технические чертежи.
Компьютерная графика
История искусства
Готический стиль
Живопись Витраж
Античность
Искусство Византии
Барокко
АРХИТЕКТУРА РУССКОГО КЛАССИЦИЗМА
КЛАССИЦИЗМ В МОСКВЕ
Архитектура в Вене
Джованни Лоренцо Бернини
Франческо Борромини
Барокко во Франции
Барокко в Англии
РОМАНСКИЙ СТИЛЬ
Архитектура и скульптура готики
Собор Нотр-Дам в Париже
Реймсский собор
Готический стиль в Германии
Клаус Слютер
Готика в Нидерландах
Города и замки Германии
Рождение средневековой культуры
КАРОЛИНГСКОЕ ВОЗРОЖДЕНИЕ
РАСЦВЕТ СРЕДНЕВЕКОВОЙ КУЛЬТУРЫ
РАСЦВЕТ СРЕДНЕВЕКОВОЙ ГОТИКИ
Паломнические базилики
Бургундия
Северная Италия
Романика в Испании
Романика в Англии
Романская архитектура

Позиционные задачи В данном модуле вы научитесь находить общий элемент пересекающихся геометрических фигур в пространстве, овладеете алгоритмом построения проекций элементов пересечения геометрических фигур, занимающих различное положение относительно плоскостей проекций.

Решение главных позиционных задач. 3 случая. 3 алгоритма. Способ решения главных позиционных задач, или алгоритм решения, зависит от расположения пересекающихся геометрических фигур относительно плоскостей проекций.

Решение задач в случае, когда одна из пересекающихся фигур проецирующая, вторая - непроецирующая.

Конические сечения Решение второй главной позиционной задачи по 2 алгоритму рассмотрим на примере конических сечений

Эллипс получится в сечении, если плоскость не перпендикулярна оси конуса и пересекает все его образующие

Гипербола получится в сечении, если плоскость при пересечении с конусом параллельна одновременно двум образующим конуса

Задача: Построить линию пересечения сферы S и горизонтально проецирующей призмы Г

Решение задач в случае, когда обе пересекающиеся фигуры - непроецирующие. В данном случае задача усложняется тем, что на чертеже нет главной проекции ни у одной из пересекающихся фигур. Поэтому для решения таких задач специально вводят вспомогательную секущую поверхность-посредник, которая пересекает обе фигуры, выявляя общие точки. Эта поверхность-посредник может быть проецирующей, и тогда решение задачи можно свести ко 2 алгоритму, или непроецирующей (например, сфера - посредник). Решение первой и второй ГПЗ рассмотрим отдельно.

Решение 2ГПЗ (в случае пересечения непроецирующих фигур)

Частные случаи пересечения поверхностей вращения второго порядка

Метрические задачи. Преобразование комплексного чертежа Модуль №4 предполагает знакомство с задачами, связанными с различными измерениями: натуральных величин отрезков, углов, плоских фигур; расстояний между фигурами и т.д. Вы узнаете, как проще решать метрические и позиционные задачи, используя способы преобразования комплексного чертежа. Кроме того, используя знания, полученные в модулях 1-3, Вы научитесь решать сложные инженерные конструктивные задачи.

Построение плоскости, касательной к поверхности Касательная плоскость - это множество всех касательных прямых, проведённых к данной кривой поверхности и проходящих через одну её точку.

Задачи на определение расстояний между геометрическими фигурами К таким задачам относятся: задачи на определение расстояний от точки до прямой, до плоскости, до поверхности; между параллельными и скрещивающимися прямыми; между параллельными плоскостями и т. п.

Преобразование комплексного чертежа Решение многих пространственных задач на комплексном чертеже часто бывает слишком сложным из-за того, что заданные геометрические фигуры расположены произвольно относительно плоскостей проекций и, следовательно, проецируются на эти плоскости в искажённом виде.

Плоский чертёж

Третья основная задача преобразования комплексного чертежа Преобразовать комплексный чертёж так, чтобы плоскость общего положения стала бы проецирующей

Решение четырех основных задач преобразованием комплексного чертежа способом вращения вокруг проецирующей оси Задача №1 Перевести прямую общего положения - в частное, т.е. чтобы прямая общего положения после поворота оказалась параллельной одной из плоскостей проекций.

Задача №3 Плоскость общего положения поставить в положение проецирующей

Преобразование комплексного чертежа часто используется при решении метрических задач. В этом случае конечной целью преобразования чертежа является получение такой проекции оригинала, на которой можно было бы видеть в натуральную величину геометрический элемент, связанный с искомой метрической характеристикой.

Решение позиционных задач с помощью преобразования комплексного чертежа Многие позиционные задачи, главным образом, задачи на пересечение поверхностей с прямыми или плоскостями общего положения, удобно решать с помощью преобразования комплексного чертежа. В этом случае конечной целью преобразования является получение такой проекции оригинала, при которой участвующие в пересечении прямая или плоскость находятся в частном положении. Тогда в новом положении решение задачи значительно упрощается. При необходимости проекции общего элемента возвращают в исходный чертёж в обратном порядке.