Начертательная геометрии и инженерная графика Преобразование комплексного чертежа Плоскости и их проекции Конические сечения Компьютерная графика

Начертательная геометрии и инженерная графика

Пересечение прямой с плоскостью общего положения

 Задача на построение точки пересечения прямой с плоскостью общего положения является одной из самых часто решаемых на практике. Поэтому её называют первой позиционной задачей. Прежде чем рассмотреть алгоритм решения задачи в общем виде рассмотрим решение двух частных задач.

Построение точки пересечения прямой общего положения

с проецирующей плоскостью

 Пусть прямая n пересекается с горизонтально проецирующей плоскостью Σ в точке М (рис.5.3). Тогда точка М является общей для прямой n и плоскости Σ. А значит горизонтальная проекция точки М1 будет также являться точкой пересечения горизонтальных проекций прямой n1 и плоскости Σ1.

Рис.5.3  Рис.5.4

 Решение задачи на комплексном чертеже (рис.5.4) сводится к нахождению точки пересечения вырожденной проекции проецирующей плоскости с проекцией заданной прямой (в данном случае пересекаются горизонтальные проекции прямой n1 и плоскости Σ1 в точке М1) и определению второй проекции точки (в данном случае фронтальной проекции М2) с помощью вертикальной линии связи. Если предположить, что заданная проецирующая плоскость является непрозрачной, то часть прямой n, лежащая за плоскостью Σ, на плоскости П2 будет невидима (она будет закрываться плоскостью) и поэтому её нужно показывать пунктирной линией.

Построение линии пересечения проецирующей плоскости

с плоскостью общего положения

 Для решения этой задачи необходимо определить две точки прямой пересечения плоскостей. На плоскости общего положения выбираются две произвольные прямые (как правило, это прямые, входящие в определитель плоскости) и находятся точки их пересечения с проецирующей плоскостью. Соединив найденные точки между собой прямой линией, получим искомую линию пересечения.

  Пусть плоскость Σ задана треугольником АВС – Σ(ΔАВС) и дана горизонтально проецирующая плоскость Θ. Необходимо построить их линию пересечения (рис.5.5).

Рис.5.5

Найдём точки пересечения сторон АС и АВ треугольника с проецирующей плоскостью. Для этого обозначим точки пересечения горизонтальных проекций этих сторон с горизонтальной проекцией проецирующей плоскости Θ1 – точки 11 и 21. Используя вертикальные линии связи, определим фронтальные проекции 12 и 22 найденных точек. Соединив между собой горизонтальные и фронтальные проекции точек 1 и 2, получим проекции искомой прямой. Необходимо отметить, что горизонтальная проекция найденной прямой совпала с горизонтальной проекцией проецирующей плоскости Θ.

Пересечение прямой общего положения

с плоскостью общего положения

 Эта позиционная задача (как и большинство других позиционных задач) решается с помощью вспомогательной плоскости. Пусть задана прямая n общего положения и плоскость Σ общего положения. Необходимо найти их точку пересечения (рис.5.6). Задача решается в следующей последовательности.

  1. Заданная прямая n заключается во вспомогательную плоскость Θ: n Ì Θ.

 2. Строится прямая пересечения заданной плоскости Σ со вспомогательной плоскостью Θ: 12= Θ Ç Σ.

 3. Построенная прямая 12 и заданная прямая n лежат в одной плоскости Θ, а значит будут пересекаться между собой: М=12Çn. Их общая точка М является общей для прямой n и плоскостей Σ и Θ, а значит, является искомой точкой пересечения прямой n и плоскости Σ.

Рис.5.6

  В качестве вспомогательной плоскости чаще всего используют проецирующие плоскости.

  Рассмотрим пример решения задачи на комплексном чертеже (рис.5.7).

Рис.5.7

  Заключаем прямую n во вспомогательную горизонтально проецирующую плоскость Θ, которую зададим горизонтальным следом Θ1 (горизонтальная проекция плоскости). Причем след Θ1 должен совпадать с горизонтальной проекцией прямой n1. Далее находим прямую пересечения вспомогательной плоскости Θ с заданной плоскостью Σ. Сторона АВ пересекается с плоскостью Θ в точке 1, а сторона АС – в точке 2. Сначала отмечаем горизонтальные проекции точек 11 и 21, а затем с помощью вертикальных линий связи находим фронтальные проекции точек 12 и 22 соответственно на фронтальных проекциях сторон треугольника А2В2 и А2С2. Таким образом, плоскости пересекаются по прямой 12. Теперь можно определить фронтальную проекцию К2 искомой точки. Она будет являться точкой пересечения фронтальных проекций построенной прямой 1222 и заданной прямой n2. Горизонтальная проекция К1 определяется с помощью вертикальной линии связи на горизонтальной проекции прямой n1.

Затем нужно определить видимость прямой n относительно плоскости Σ. Для определения видимости на П2 необходимо воспользоваться фронтально конкурирующими точками 3 и 4 (точка 3 лежит на стороне ВС треугольника, а точка 4 – на прямой n). Видимость прямой на П1 определяем с помощью горизонтально конкурирующих точек 1 и 5 (точка 1 лежит на стороне АВ, а точка 5 – на прямой n).

Решение рассмотренной задачи в краткой алгоритмической записи выглядит следующим образом:

1. Θ (n Ì Θ)

2. 12 = Σ ∩ Θ

3. K = 12 ∩ n .


Комплексный метод расчета цепей