Начертательная геометрии и инженерная графика Преобразование комплексного чертежа Плоскости и их проекции Конические сечения Компьютерная графика

Начертательная геометрии и инженерная графика

ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С КРИВЫМИ ПОВЕРХНОСТЯМИ

Точки пересечения прямой линии с кривыми поверхностями определяются при помощи того же приема, который был применен для нахождения точек пересечения прямой линии с поверхностью многогранников. Этот прием заключается в следующем:

через данную прямую провести вспомогательную плоскость;

построить фигуру сечения данной поверхности проведенной плос­костью;

найти точки, в которых данная прямая пересекается с очерком построенного сечения. Эти точки и будут искомыми точками входа и выхода.

Вспомогательную плоскость, которую проводят через прямую, следует выбирать так, чтобы получить фигуру сечения наиболее простую.

Так, для нахождения точек пересечения цилиндрической поверхности через прямую проводят плоскость, параллельную образующим поверхности. Такая плоскость пересекает поверхность по образующим.

Для нахождения точек пересечения конической поверхности вспомогательную плоскость следует проводить через вершину конуса – сечение такой плоскостью будет простейшим, так как поверхность пересечется также по прямым – образующим.

7.1. Пересечение прямой линии с цилиндрической поверхностью

Рассмотрим на рис. 7.1 наклонный цилиндр, стоящий на плоскости a, и некоторую прямую а, пересекающую цилиндрическую поверхность.

Рис. 7.1

Взяв на прямой какие-либо точки А и В, проведем через них прямые, параллельные образующим поверхности. Эти параллельные прямые и определят вспомогательную плоскость w, которая пересечет цилиндрическую поверхность по некоторым образующим. Для того, чтобы определить эти образующие, построим линию пересечения плоскости w с плоскостью основания цилиндра a. Очевидно, что линия пересечения этих плоскостей пройдет через точки M и N, в которых прямые, определяющие плоскость w, пересекаются с плоскостью a.

Прямая MN пересечет очерк основания цилиндра в точках 1 и 2, через которые и проходят вышеназванные образующие. Пересечение этих образующих с данной прямой a определит искомые точки пересечения K и L.

На рис. 7.2 показано решение задачи на эпюре цилиндра, стоящего на горизонтальной плоскости проекций. В этом случае точки M и N для прямых, определяющих вспомогательную плоскость, являются их горизонтальными следами, а прямая MN – горизонтальным следом этой плоскости.

Выполненные на рис. 7.2 построения полностью соответствуют вышеприведенному описанию.

Рис. 7.2

Отрезок [K-L] прямой линии а находится внутри цилиндра и изображается поэтому линией невидимого контура.

На фронтальной проекции слева от точки K прямая а видна, т.к. эта точка лежит на видимой стороне поверхности цилиндра. Часть прямой а справа от точки L остается невидимой, т.к. точка L лежит на невидимой стороне поверхности цилиндра. На горизонтальной проекции слева от точки K прямая видна, а справа от точки L – не видна.

В случае пересечения прямой с поверхностью прямого цилиндра (рис. 7.3) проведение вспомогательной плоскости будет излишним, так как горизонтальные проекции К¢¢ и L¢ точек пересечения усматриваются непос­редственно из задания, а по ним находятся на фронтальной проекции прямой фронтальные проекции точек пересечения - К¢¢ и L¢¢.

7.2. Пересечение прямой линии с конической поверхностью

Пусть имеем конус, расположенный на плоскости a, и некоторую прямую а, пересекающую коническую поверхность (рис. 7.4).

Проведем через какие-нибудь точки А и В прямой а и вершину конуса S прямые SA и SB. Эти пересекающиеся прямые и определяют вспомогательную плоскость w, которая пересечет коническую поверхность по некоторым образующим. Для нахождения этих образующих построим линию пересечения плоскости w с плоскостью основания конуса a. Линия пересечения этих плоскостей пройдет через точки M и N, в которых прямые SA и SB пересекаются с плоскостью a.

Прямая MN пересекает очерк основания конуса в точках 1 и 2, через которые и проходят вышеназванные образующие. Пересечение этих образующих с данной прямой а определит искомые точки пересечения К и L.

Рис. 7.3 Рис. 7.4

На рис. 7.5 показано решение рассматриваемой задачи на эпюре конуса, стоящего на горизонтальной плоскости проекций. В этом случае точки M и N для прямых SA и SB, определяющих вспомогательную плоскость, являются их горизонтальными следами, а прямая MN – горизонтальным следом этой плоскости.

Выполненные на рис. 7.5 построения полностью соответствуют выше­приведенному описанию.

Отрезок [K-L] прямой а находится внутри конуса и изображается линией невидимого контура. На фронтальной проекции прямая слева от точки К и справа от точки L видна, т.к. точки К и L находятся на передней половине конуса. На горизонтальной проекции конус виден полностью, поэтому точки К и L видны и, следовательно, прямая а также видна.

В отдельных случаях точки пересечения прямой с поверхностью конуса могут быть найдены проще, чем изложено выше. На рис. 7.6, 7.7, 7.8 приведены такие примеры.

Рис. 7.5

Точки пересечения К и L прямой а, пересекающей ось конуса (рис. 7.6), находим при помощи проведенной через прямую горизонтально проецирующей плоскости w, пересекающей коническую поверхность по образующим S1 и S2. В пересечении фронтальных проекций этих образующих и прямой получаем точки К¢¢ и L¢¢, а по ним находим горизонтальные проекции точек пересечения К¢ и L¢.

Если прямая а перпендикулярна плоскости проекций p1 (рис. 7.7), то горизонтальная проекция точки пересечения К¢ совпадает с горизонтальной проекцией прямой а. Проведя через точку К образующую конуса S1, в пересечении ее фронтальной проекции S¢¢1¢¢ с а¢¢ получим фронтальную проекцию точки пересечения К¢¢.

Рис. 7.6 Рис. 7.7 Рис. 7.8

Когда пересекающая прямая перпендикулярна плоскости проекций p2  (рис. 7.8), через нее можно провести горизонтальную плоскость w и, построив окружность, по которой ею пересекается коническая поверхность, получим горизонтальные проекции точек пересечения К¢ и L¢, фронтальные проекции К¢¢ и L¢¢ совпадают с фронтальной проекцией прямой.

 

 

 

 

 

Пересечение прямой линии со сферой

Построение точек пересечения прямой линии с поверхностью сферы приводится на рис. 7.9.

Так как любая плоскость пересекает поверхность сферы по окружности, через прямую m проводится проецирующая плоскость. На рис. 7.9 это горизонтально проецирующая плоскость w. Лежащая в ней окружность сечения сферы на фронтальную плоскость проекций проецируется эллипсом. Чтобы избежать построение этой лекальной кривой, определение искомых точек производится на дополнительной плоскости проекций p3, параллельной плоскости w. На нее окружность сечения проецируется окружностью, а прямая m – линией m¢². Точки пересечения этих линий К¢¢¢ и L¢¢¢ являются дополнительными проекциями искомых. По ним определяют горизонтальные и фронтальные проекции точек К и L. На фронтальной проекции точки К и L, лежащие на передней половине сферы, видны. Поэтому линия m видна слева от точки K и справа от точки L (между этими точками линия находится внутри сферы). На горизонтальной проекции точка K, находящаяся на нижней половине сферы, не видна. Поэтому слева от нее часть прямой m закрыта поверхностью сферы. Справа от видимой сверху точки L прямая m видна.

Рис. 7.9

 

 

 

 

 

 

 

 

 

 

 

 

 


Комплексный метод расчета цепей